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A clutter C is a collection E(C) of subsets of a finite set V(C) with the
property that A, ! A2 for all A&, A2 E E(C). Let M(C) be the 0,1 matrix
with columns indexed by V(C) whose rows are the 'ncidence vectors of the
members of E(C).

Consider the two linear programs

min{wx: x > 0, M(C)x > 1} (1)

max{yl: y > 0, yM(C) • w}. (2)

The clutter C has the Max Flow Min Cut property if (1) and (2) have
integral optimum solutions x and y for all nonncgative integral vectors w. C
is ideal if (1) has an integral optimum solution x for all nonnegative (integral)
vectors w. C packs if (1) and (2) have integral optimum solutions x and y
when w = 1.

For a clutter C, the deletion C\j and contraction C/j of an element
j E V(C) are clutters defined as follows: V(C\j) = V(C/j) = V(C) - {j},
E(C\j) = {A E E(C) : j V A} and E(C/j) are the minimal members of
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{A - {j}: A E E(C)}. Any clutter obtained from C by repeated application
of the contraction and deletion operations is called a minor of C.

We propose the following conjecture.

Conjecture 1 A clutter C has the Max Flow Min Cut property if and only
if C and all its minors pack.

Remark 1 The "only if" part of the above statement is obvious since saying
that a minor of C packs is equivalent to stating that (1) and (2) have integral
solution vectors x and y for the objective function wj = 0 for a deleted
element j, wj = oo for a contracted element j and wj = 1 for the remaining
elements.

Remark 2 A weakening of the "if" condition follows from Lehman's char-
acterization of ideal clutters [2] which implies the following:
If C is not ideal, it contains a minor C' such that the linear program (1)
associated with C' has a unique optimum solution x whose components are
all fractional when w = 1. It follows that if C and all its minors pack, then
C is ideal.

Remark 3 A special case where the conjecture holds is when C is a bi-
nary clutter. Seymour [4] proved that a binary clutter has the Max Flow
Min Cut property if and only if it does have a Q6 minor, where V(Q 6) =
{1,2,3,4,5,6} and E(Q6) = {{1,3,5},{1,4,6},{2,3,6}. 2,4,5}}. It is easy
to check that the linear program (2) associated with Q6 has a unique opti-
mum solution vector y = 1 when w = 1.

2

Remark 4 This conjecture is the exact analog of the replication lemma used
in the proof of the Fulkerson-Lovisz [1] [3] pluperfect graph theorem. Let

max{wx: x > 0, M(C)x < 1} (3)

mrin{yl: y Ž_ 0, yM(C) >_ w}. (4)

The replication lemma shows that (3) and (4) have integral optimum solution
vectors x and y for every 0, 1 vector w if and only if they have integral
optimum solution vectors for every (nonnegative) integral vector w.

The pluperfect graph theorem states that if (4) has an integral optimum
solution y for every 0, 1 vector w, then (3) and (4) have integral optimum
solutions x and y for every (nonnegative) integral vector w.
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Remark 5 To prove the "if" part of Conjecture 1, it is sufficient to show
the following.

Conjecture 2 (Replication Conjecture) If C and all its minors pack,
tf, en the clutter C, defined below. packs. For j E V(C), let

V(Cj) = V(C) P {j'}

E(Cj) = E(C) U(U A \ {j} U {j'}).
A-j

Indeed, observe that the linear programs (1) and (2) have integral optimum
solutions for the vector w such that w, = 2 and wi = 1 for i 5 j if and only if
the clutter C, packs. Therefore, using the replication conjecture recursively,
it follows that C has the Max Flow Min Cut property.
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